Controlling Dust in the Tooling Operation
March 5, 2013 | 4:54 pm CST
Leitz whispercut 145.jpg

It’s an established fact that dust extraction impacts tool performance. In certain cases, chips created during the cutting operation can even cause an indentation on the workpiece surface. Optimized gullets, designed with the help of stroboscopes, contribute to minimizing this problem.

Additional considerations are air speed and hood design. Insufficient air speed and hood design can cause a cloud of chips in the dust hood in which the tool rotates. Rotating cutting edges frequently hit bouncing chips, causing additional tool wear and accelerating the dulling process, thus reducing tool life.

Steps to improve this situation include repositioning of the evacuation nozzle, which results in the benefit of kinetic energy from the chips when they are cut off the workpiece. In other words, the dust hose nozzle is lined up in the direction from which the tool throws the chips, forming a funnel which collects most of the chips. 

Even with these improvements, however, dust is still not always extracted at a sufficient rate. Fine dust poses the biggest challenge — requiring frequent machine downtime for cleaning and maintenance.

Looking deeper into dust hood design, researchers found that the minimum air speed in the nozzle area commonly requested by machine manufacturers was about 20m/s. Measurements in the field showed that the air speed is often much better — approximately 30-35m/s. However, this is still not sufficient when considering the speed at the outside diameter of a rotating tool (usually 40-80m/s). Comparing both speeds, the rim speed of the rotating tool and the air speed at the nozzle, there is more air brought into the hood (by the tool) than removed (through the air current in the dust hose).

Large workpiece widths often totally or partially cover the hood intake area by closing the open side of the hood. Obstruction of air intake is the consequence.

The result is stagnation of pressure in the smallest section where the distance between tool and the dust hood wall is the smallest and a negative pressure in the collection nozzle area. This stagnation pressure causes dust and chips to hit an “air cushion,” preventing the proper removal of the particles.

Dust hoods are designed to avoid these areas of differing air pressure. Characteristics of a successful hood design are a curved guide in the area of chip flow, where the cross section between hood and tool continuously increases in the direction of air flow. A swirl section close to the nozzle helps guide uncollected chips back into the air stream. To avoid negative air pressure caused by this swirl, an air intake has been added. It allows a supporting air stream from outside into the hood. The result is that over 95 percent of the particles created by the tool can be collected by this new generation hood.

The one known disadvantage of this technique is that it only works well when tool and hood design are coordinated. It would not be an effective solution for a shaper, where tools of different diameters and shapes are constantly exchanged. Excellent examples for successful use of this evacuation technique can be found in various applications involving substrates such as laminate flooring, MDF, particleboard and solid wood.

Source: Harry S. Guensche, is director of technical sales, Leitz Tooling Systems Inc. For information visit or call (800) 253-6070.

Click here to read the original article

Have something to say? Share your thoughts with us in the comments below.